Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Mol Sci ; 23(8)2022 Apr 13.
Article in English | MEDLINE | ID: covidwho-1785754

ABSTRACT

Immune response to SARS-CoV-2 and ensuing inflammation pose a huge challenge to the host's nicotinamide adenine dinucleotide (NAD+) metabolism. Humans depend on vitamin B3 for biosynthesis of NAD+, indispensable for many metabolic and NAD+-consuming signaling reactions. The balance between its utilization and resynthesis is vitally important. Many extra-pulmonary symptoms of COVID-19 strikingly resemble those of pellagra, vitamin B3 deficiency (e.g., diarrhoea, dermatitis, oral cavity and tongue manifestations, loss of smell and taste, mental confusion). In most developed countries, pellagra is successfully eradicated by vitamin B3 fortification programs. Thus, conceivably, it has not been suspected as a cause of COVID-19 symptoms. Here, the deregulation of the NAD+ metabolism in response to the SARS-CoV-2 infection is reviewed, with special emphasis on the differences in the NAD+ biosynthetic pathway's efficiency in conditions predisposing for the development of serious COVID-19. SARS-CoV-2 infection-induced NAD+ depletion and the elevated levels of its metabolites contribute to the development of a systemic disease. Acute liberation of nicotinamide (NAM) in antiviral NAD+-consuming reactions potentiates "NAM drain", cooperatively mediated by nicotinamide N-methyltransferase and aldehyde oxidase. "NAM drain" compromises the NAD+ salvage pathway's fail-safe function. The robustness of the host's NAD+ salvage pathway, prior to the SARS-CoV-2 infection, is an important determinant of COVID-19 severity and persistence of certain symptoms upon resolution of infection.


Subject(s)
COVID-19 , Niacin , Pellagra , Humans , NAD/metabolism , Niacin/pharmacology , Niacinamide/metabolism , Pellagra/drug therapy , Pellagra/etiology , SARS-CoV-2
2.
FEBS J ; 289(4): 955-964, 2022 02.
Article in English | MEDLINE | ID: covidwho-1123551

ABSTRACT

Divergent pathways of macrophage metabolism occur during infection, notably switching between oxidative phosphorylation and aerobic glycolysis (Warburg-like metabolism). Concurrently, macrophages shift between alternate and classical activation. A key enzyme upregulated in alternatively activated macrophages is indoleamine 2,3-dioxygenase, which converts tryptophan to kynurenine for de novo synthesis of nicotinamide. Nicotinamide can be used to replenish cellular NAD+ supplies. We hypothesize that an insufficient cellular NAD+ supply is the root cause of metabolic shifts in macrophages. We assert that manipulation of nicotinamide pathways may correct deleterious immune responses. We propose evaluation of nicotinamide (Vitamin B3) and analogues, including isoniazid, nicotinamide mononucleotide and nicotinamide riboside, as potential therapy for infectious causes of sepsis, including COVID-19.


Subject(s)
COVID-19/complications , Energy Metabolism , Macrophages/metabolism , Niacinamide/metabolism , Sepsis/metabolism , Animals , Biological Evolution , Humans , Macrophages/immunology , Sepsis/etiology
3.
Curr Neurovasc Res ; 17(5): 765-783, 2020.
Article in English | MEDLINE | ID: covidwho-922756

ABSTRACT

Metabolic disorders that include diabetes mellitus present significant challenges for maintaining the welfare of the global population. Metabolic diseases impact all systems of the body and despite current therapies that offer some protection through tight serum glucose control, ultimately such treatments cannot block the progression of disability and death realized with metabolic disorders. As a result, novel therapeutic avenues are critical for further development to address these concerns. An innovative strategy involves the vitamin nicotinamide and the pathways associated with the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and clock genes. Nicotinamide maintains an intimate relationship with these pathways to oversee metabolic disease and improve glucose utilization, limit mitochondrial dysfunction, block oxidative stress, potentially function as antiviral therapy, and foster cellular survival through mechanisms involving autophagy. However, the pathways of nicotinamide, SIRT1, mTOR, AMPK, and clock genes are complex and involve feedback pathways as well as trophic factors such as erythropoietin that require a careful balance to ensure metabolic homeostasis. Future work is warranted to gain additional insight into these vital pathways that can oversee both normal metabolic physiology and metabolic disease.


Subject(s)
Circadian Clocks/genetics , Metabolic Diseases/genetics , Niacinamide/genetics , Sirtuin 1/genetics , TOR Serine-Threonine Kinases/genetics , Animals , Humans , Metabolic Diseases/diagnosis , Metabolic Diseases/metabolism , Niacinamide/metabolism , Sirtuin 1/metabolism , TOR Serine-Threonine Kinases/metabolism
4.
J Biol Chem ; 295(52): 17986-17996, 2020 12 25.
Article in English | MEDLINE | ID: covidwho-867671

ABSTRACT

Poly(ADP-ribose) polymerase (PARP) superfamily members covalently link either a single ADP-ribose (ADPR) or a chain of ADPR units to proteins using NAD as the source of ADPR. Although the well-known poly(ADP-ribosylating) (PARylating) PARPs primarily function in the DNA damage response, many noncanonical mono(ADP-ribosylating) (MARylating) PARPs are associated with cellular antiviral responses. We recently demonstrated robust up-regulation of several PARPs following infection with murine hepatitis virus (MHV), a model coronavirus. Here we show that SARS-CoV-2 infection strikingly up-regulates MARylating PARPs and induces the expression of genes encoding enzymes for salvage NAD synthesis from nicotinamide (NAM) and nicotinamide riboside (NR), while down-regulating other NAD biosynthetic pathways. We show that overexpression of PARP10 is sufficient to depress cellular NAD and that the activities of the transcriptionally induced enzymes PARP7, PARP10, PARP12 and PARP14 are limited by cellular NAD and can be enhanced by pharmacological activation of NAD synthesis. We further demonstrate that infection with MHV induces a severe attack on host cell NAD+ and NADP+ Finally, we show that NAMPT activation, NAM, and NR dramatically decrease the replication of an MHV that is sensitive to PARP activity. These data suggest that the antiviral activities of noncanonical PARP isozyme activities are limited by the availability of NAD and that nutritional and pharmacological interventions to enhance NAD levels may boost innate immunity to coronaviruses.


Subject(s)
COVID-19/metabolism , NAD/immunology , Poly(ADP-ribose) Polymerases/immunology , SARS-CoV-2/immunology , A549 Cells , ADP-Ribosylation , Adenosine Diphosphate Ribose/metabolism , Adult , Animals , COVID-19/immunology , Cell Line, Tumor , Female , Ferrets , Humans , Immunity, Innate , Male , Metabolome , Mice , Mice, Inbred C57BL , NAD/metabolism , Niacinamide/analogs & derivatives , Niacinamide/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/blood , Pyridinium Compounds , SARS-CoV-2/metabolism
5.
Molecules ; 25(15)2020 Jul 22.
Article in English | MEDLINE | ID: covidwho-670234

ABSTRACT

Vitamin B3, or niacin, is one of the most important compounds of the B-vitamin complex. Recent reports have demonstrated the involvement of vitamin B3 in a number of pivotal functions which ensure that homeostasis is maintained. In addition, the intriguing nature of its synthesis and the underlying mechanism of action of vitamin B3 have encouraged further studies aimed at deepening our understanding of the close link between the exogenous supply of B3 and how it activates dependent enzymes. This crucial role can be attributed to the gut microflora and its ability to shape human behavior and development by mediating the bioavailability of metabolites. Recent studies have indicated a possible interconnection between the novel coronavirus and commensal bacteria. As such, we have attempted to explain how the gastrointestinal deficiencies displayed by SARS-CoV-2-infected patients arise. It seems that the stimulation of a proinflammatory cascade and the production of large amounts of reactive oxygen species culminates in the subsequent loss of host eubiosis. Studies of the relationhip between ROS, SARS-CoV-2, and gut flora are sparse in the current literature. As an integrated component, oxidative stress (OS) has been found to negatively influence host eubiosis, in vitro fertilization outcomes, and oocyte quality, but to act as a sentinel against infections. In conclusion, research suggests that in the future, a healthy diet may be considered a reliable tool for maintaining and optimizing our key internal parameters.


Subject(s)
Coronavirus Infections/pathology , Gastrointestinal Microbiome/physiology , Niacin/metabolism , Niacinamide/metabolism , Oxidative Stress/physiology , Pneumonia, Viral/pathology , Betacoronavirus/metabolism , COVID-19 , Dysbiosis/physiopathology , Humans , Pandemics , Reactive Oxygen Species/metabolism , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL